

Certificate of Analysis

Thaw and Culture Details

Cell Line Name	JHU055i		
WiCell Lot Number	DB41083		
Provider/Client	Johns Hopkins University – Laboratory	of Dr. Lewis Becker	
Banked By	Johns Hopkins University – Laboratory	of Dr. Lewis Becker	
Thaw and Culture Recommendations	WiCell recommends thawing 1 vial into 3 wells of a 6 well plate using TeSR [™] - E8 [™] and Recombinant Human Vitronectin. WiCell recommends thawing using ROCK Inhibitor for best results.		
Protocol	WiCell Feeder Independent Pluripotent	Stem Cell Protocol	
Culture Platform Prior to Freeze	Medium: E8	Matrix: Vitronectin	
Passage Number	p6 Cells were cultured for 5 passages prior to freeze and post reprogramming. Plated cells at thaw should be labeled passage 6.		
Date Vialed	06-June-2016		
Vial Label	P055 P6 6/6/16 0.7M		
Biosafety and Use Information	Appropriate biosafety precautions should be followed when working with these cells. The end user is responsible for ensuring that the cells are handled and stored in an appropriate manner. WiCell is not responsible for damages or injuries that may result from the use of these cells. Cells distributed by WiCell are intended for research purposes only and are not intended for use in humans.		

The material provided under this certificate has been subjected to the tests specified and the results and data described herein are accurate based on WiCell's reasonable knowledge and belief. Appropriate Biosafety Level practices and universal precautions should always be used with this material. For clarity, the foregoing is governed solely by WiCell's Terms and Conditions of Service, which can be found at http://www.wicell.org/privacyandterms.

Certificate of Analysis

Results

Test Description	Test Provider	Test Method	Test Specification	Result	
	WiCell G-T-L Banding performed on 20 metaphase cells		Expected karyotype	See Report	
		-X[2]/47,XX,+X,t(9;10)(p24;q24)[2]/46,XX[1			
Karyotype	Interpretation: This is an abnormal karyotype. There are two related abnormal clones. The cells in the primary clone (two of twenty cells examined; representative image on the left) contain an additional copy of chromosome X. Gain of chromosome X is recurrently acquired in pluripotent stem cell cultures. The cells in the secondary clone (two of twenty cells examined; representative image on the right) contain the gain of chromosome X and an apparently balanced translocation between the short (p) arm of chromosome 9 and the long (q) arm of chromosome 10. No other clonal abnormalities were detected at the stated band level of resolution. There is a nonclonal finding, listed above. Nonclonal findings may result from technical artifact, but may be due to a developing clonal abnormality or to low-level mosaicism.				
Post-Thaw Viable Cell Recovery	WiCell	Thaw using specified Thaw & Culture Recommendations	Recoverable attachment after passage	Pass	
Identity by STR	WiCell	PowerPlex 16 HS System by Promega™	Defines STR profile of deposited cell line	See Report	
Mycoplasma	WiCell	PCR	Amplification of mycoplasma specific DNA detected with negative result	Pass	
Sterility	Steris	Native Product Direct Transfer using FTM and TSB (ST/07)	Negative for growth following 14 days of culture	Pass	

Testing Reported by Provider

The Provider stated that some or all of the additional analyses listed below may have been performed for this cell line. For more information, publication and dbGaP links, where available, are provided on the cell line specific web page on the WiCell website.

- Embryoid bodies
- Infinium[®] Expanded Multi-Ethnic Genotyping Array (MEGA^{EX})

©2022 WiCell Research Institute

Cell

The material provided under this certificate has been subjected to the tests specified and the results and data described herein are accurate based on WiCell's reasonable knowledge and belief. Appropriate Biosafety Level practices and universal precautions should always be used with this material. For clarity, the foregoing is governed solely by WiCell's Terms and Conditions of Service, which can be found at http://www.wicell.org/privacyandterms.

Certificate of Analysis

Approval Date	WiCell Quality Assurance Approval
02-June-2022	62/2022 XG WiGil Quality Assurance Signed by Gay, Jenna

©2022 WiCell Research Institute

The material provided under this certificate has been subjected to the tests specified and the results and data described herein are accurate based on WiCell's reasonable knowledge and belief. Appropriate Biosafety Level practices and universal precautions should always be used with this material. For clarity, the foregoing is governed solely by WiCell's Terms and Conditions of Service, which can be found at http://www.wicell.org/privacyandterms.

Page 3 of 3 Form SOP-232.01 version 4.0

Results: 47,XX,+X[2]/47,XX,+X,t(9;10)(p24;q24)[2]/46,XX[15]

Nonclonal findings: 46,XX,del(4)(q31.1)

Cell: 4	ļ.	Slide:	G0	3	Slide Ty	pe: Kar	yotyping
Contraction of the second	Phone 2	No.	3	50		approximation 4	(turnerson
Contraction 6	Constants of	8		Ĵŗ	10	any care 11	CONTRACTO 12
13	446510 14	15			16	17	18
19	20		21	22	þ	20	э) ү

Cell:	4	Slide:	G02	Slid	le Тур	e: Kar	yotypin
Contraction of the	(CLEDENSITY of the	Canada and A	Cateron P			Contraction of the second	and the second s
Contraction of the second	and a	Congreto 8		and a	10	11 11	5 12
13	14	15			16	5 B 17	18
28 19	36		\$ @. 21	B 22		A linear	angen y

Total Counted: 20 Total Analyzed: 10 Total Karyogrammed: 6 Band Resolution: 400 - 475

Interpretation:

This is an abnormal karyotype. There are two related abnormal clones.

The cells in the primary clone (two of twenty cells examined; representative image on the left) contain an additional copy of chromosome X. Gain of chromosome X is recurrently acquired in pluripotent stem cell cultures.

The cells in the secondary clone (two of twenty cells examined; representative image on the right) contain the gain of chromosome X and an apparently balanced translocation between the short (p) arm of chromosome 9 and the long (q) arm of chromosome 10.

No other clonal abnormalities were detected at the stated band level of resolution.

There is a nonclonal finding, listed above. Nonclonal findings may result from technical artifact, but may be due to a developing clonal abnormality or to low-level mosaicism.

Completed by: Jennifer Pecos, CG(ASCP) Reviewed and Interpreted by: Kaitlin C. Lenhart, PhD, DABMGG

Case #: 091687

For internal use only

Date:	Sent By:	Sent To:	QC Review By:
Limitations: This assay allows for microscopic visua	alization of numerical a	nd structural chromosome abnormalities.	The size of structural abnormality that can be detected

Limitations. This assay allows for hicroscopic visualization of humerical and structural chromosome abnormalities. The size of structural abnormality that can be detected is >3-10Mb, dependent upon the G-band resolution obtained from this specimen. For the purposes of this report, band level is defined as the number of G-bands per haploid genome. It is documented here as "band level", i.e., the range of bands determined from the four karyograms in this assay. Detection of heterogeneity of clonal cell populations in this specimen (i.e.,mosaicism) is limited by the number of metaphase cells examined, documented here as "# of cells counted".

This assay was conducted solely for listed investigator/institution. The results of this assay are for research use only. Unless otherwise mutually agreed in writing, the services provided to you hereunder by WiCell Research Institute, Inc. ("WiCell") are governed solely by WiCell's Terms and Conditions of Service, found at

www.wicell.org/privacyandterms. Any terms you may attach to a purchase order or other document that are inconsistent, add to, or conflict with WiCell's Terms and Conditions of Service are null and void and of no legal force or effect.

Short Tandem Repeat

Requestor: WiCell Stem Cell Bank, WiCell Samples Received: 20Apr22, 18Apr22 STR Amplification Date: 23Apr22 Form SOP-89.01 Version 8.0

Sample Name	JHU055i- DB41083 p7	JHU158i- DB36358 p6	JHU052i- DB41077 p9			
Label on tube	91639	91601	91600			
FGA						
ΤΡΟΧ						
D8S1179						
vWA						
Amelogenin						
Penta_D		Identify				
CSF1PO			ntion has			
D16S539		been redacted to protect donor				
D7S820	confidentiality. If more information					
D13S317	is required,					
D5S818	please contact info@wicell.org					
Penta_E						
D18S51						
D21S11						
TH01						
D3S1358						
Allelic Polymorphisms	28	28	28	28		
Matches*				90435, 90771, 90291		
Comments			Minor Contamination			

*Note: The STR profile of the following sample is an exact match for the given sample/samples.

Short Tandem Repeat

Requestor: WiCell Stem Cell Bank, WiCell Samples Received: 20Apr22, 18Apr22 STR Amplification Date: 23Apr22 Form SOP-89.01 Version 8.0

<u>Assay Description</u>: STR analysis is performed using the PowerPlex 16 HS System by Promega[™]. Results are reported as 13 CODIS STR markers, Amelogenin for gender determination and two low-stutter, highly discriminating pentanucleotide STR markers.

<u>Results</u>: The genotypic profiles comprise a range of 28 allelic polymorphisms across the 15 STR loci analyzed.

<u>Interpretation</u>: The concentration of DNA required to achieve an acceptable STR genotype (signal/ noise) was equivalent to that required for the standard procedure (~1 ng/amplification reaction) from human genomic DNA. These results suggests that the cells submitted correspond to the cell lines as named and were not contaminated with any other human cells or a significant amount of mouse feeder layer cells.

Sensitivity: Sensitivity limits for detection of STR polymorphisms unique to either this or other human cell lines is ~2-5%.

Minor Contamination: Sample 91600 shows signs of possible contamination. The most likely explanation for this result is that two cultures have been mixed.

4/30/20	5/2/2	2022 5/2/2022
X Molly Miles	X Anna Lisa Larson	X Andy Arntz
Tech #1 Characterization Signed by: Miles, Molly	Tech #2 Characterization Signed by: Larson, Anna Lisa	QA Review Quality Assurance Signed by: Arntz, Andy

Unless otherwise mutually agreed in writing, the services provided to you hereunder by WiCell Research Institute, Inc. ("WiCell") are governed solely by WiCell's Terms and Conditions of Service, found at www.wicell.org/privacyandterms. Any terms you may attach to a purchase order or other document that are inconsistent, add to, or conflict with WiCell's Terms and Conditions of Service are null and void and of no legal force or effect.

Raw data is available upon request.

Mycoplasma Assay Report

PCR-based assay performed by WiCell WiCell Stem Cell Bank, WiCell 23Apr22

Sample Name	Result	Interpretation
JHU055i-DB41083 p7 (91639)	Negative	Band was not seen at 270bp, indicating the absence of mycoplasma.
Positive (+) Control	Positive	
Negative (-) Control	Negative	

Assay Description Sample is tested for presence of mycoplasma using EZ-PCR[™] Mycoplasma Detection Kit (Sartorius).

4/23/2022	4/26/2022	4/26/2022
X Molly Miles	X Amber Kuhn	X Dawn Graham
Tech #1 Characterization Signed by: Miles, Molly	Tech #2 Characterization Signed by: Kuhn, Amber	QA Review Quality Assurance Signed by: Graham Dawn

Unless otherwise mutually agreed in writing, the services provided to you hereunder by WiCell Research Institute, Inc. ("WiCell") are governed solely by WiCell's Terms and Conditions of Service, found at www.wicell.org/privacyandterms. Any terms you may attach to a purchase order or other document that are inconsistent, add to, or conflict with WiCell's Terms and Conditions of Service are null and void and of no legal force or effect.

A gel image is available upon request.

Native Product Sterility Report

WiCell 504 S Rosa Road, Rm 101 Madison, Wl 53719

22040783	SAMPLE #:
14-Apr-22	DATE RECEIVED:
28-Apr-22	TEST INITIATED:
12-May-22	TEST COMPLETED:

SAMPLE NAME / DESCRIPTION:	JHU038i-DB40987
	JHU039i-DB40991
	JHU040i-DB41044
	JHU043i-DB41052
	JHU048i-DB41068
	JHU055i-DB41083
	JHU158i-DB36358
	JHU171i-DB36374
	JHU197i-DB41411
	JHU235i-DB37044
	JHU185i-DB41395
	JHU052i-DB41077
	iPS(IMR90)-4-WB67850
	iPS(IMR90)-4-WB67851
	iPS(IMR90)-4-WB67852
	iPS(IMR90)-4-WB67853
	PENN102i-96-1-DB36580
	PENN104i-321-6-DB34693

UNIQUE IDENTIFIER:

N/A

TEST RESULTS:

	# Positives		
# Tested	(Growth)	- Control	
19	0	2 Negatives	

TEST SUMMARY:

# Samples	Media Type	Volume (mL)	Incubation Temperature (° C)	Incubation Duration (Days)
19	TSB	40	20-25	14
19	FTG	40	30-35	14

Native Product Sterility Report

REFERENCE:

Processed according to LAB-003: Sterility Test Procedure

PD #:

000053

TEST METHODOLOGY:

USP - Direct Transfer

COMMENTS: NA

REVIEWED BY Some Buckhard

DATE 23May 202 2

Specific test results may not be indicative of the characteristics of any other samples from the same lot or similar lots. This test report shall not be reproduced, except in full, without prior written approval. Liability is limited to the costs of the tests. Results applied to samples as received.